Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Free, publicly-accessible full text available September 1, 2026
- 
            ABSTRACT Understanding clinical trajectories of sepsis patients is crucial for prognostication, resource planning, and to inform digital twin models of critical illness. This study aims to identify common clinical trajectories based on dynamic assessment of cardiorespiratory support using a validated electronic health record data that covers retrospective cohort of 19,177 patients with sepsis admitted to intensive care units (ICUs) of Mayo Clinic Hospitals over 8-year period. Patient trajectories were modeled from ICU admission up to 14 days using an unsupervised machine learning two-stage clustering method based on cardiorespiratory support in ICU and hospital discharge status. Of 19,177 patients, 42% were female with a median age of 65 (interquartile range [IQR], 55–76) years, The Acute Physiology, Age, and Chronic Health Evaluation III score of 70 (IQR, 56–87), hospital length of stay (LOS) of 7 (IQR, 4–12) days, and ICU LOS of 2 (IQR, 1–4) days. Four distinct trajectories were identified: fast recovery (27% with a mortality rate of 3.5% and median hospital LOS of 3 (IQR, 2–15) days), slow recovery (62% with a mortality rate of 3.6% and hospital LOS of 8 (IQR, 6–13) days), fast decline (4% with a mortality rate of 99.7% and hospital LOS of 1 (IQR, 0–1) day), and delayed decline (7% with a mortality rate of 97.9% and hospital LOS of 5 (IQR, 3–8) days). Distinct trajectories remained robust and were distinguished by Charlson Comorbidity Index, The Acute Physiology, Age, and Chronic Health Evaluation III scores, as well as day 1 and day 3 SOFA (P< 0.001 ANOVA). These findings provide a foundation for developing prediction models and digital twin decision support tools, improving both shared decision making and resource planning.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Free, publicly-accessible full text available December 15, 2025
- 
            IntroductionDigital twins of patients are virtual models that can create a digital patient replica to test clinical interventionsin silicowithout exposing real patients to risk. With the increasing availability of electronic health records and sensor-derived patient data, digital twins offer significant potential for applications in the healthcare sector. MethodsThis article presents a scalable full-stack architecture for a patient simulation application driven by graph-based models. This patient simulation application enables medical practitioners and trainees to simulate the trajectory of critically ill patients with sepsis. Directed acyclic graphs are utilized to model the complex underlying causal pathways that focus on the physiological interactions and medication effects relevant to the first 6 h of critical illness. To realize the sepsis patient simulation at scale, we propose an application architecture with three core components, a cross-platform frontend application that clinicians and trainees use to run the simulation, a simulation engine hosted in the cloud on a serverless function that performs all of the computations, and a graph database that hosts the graph model utilized by the simulation engine to determine the progression of each simulation. ResultsA short case study is presented to demonstrate the viability of the proposed simulation architecture. DiscussionThe proposed patient simulation application could help train future generations of healthcare professionals and could be used to facilitate clinicians’ bedside decision-making.more » « less
- 
            As telehealth utilization for ambulatory and home-based care skyrockets, there has been a paradigm shift to a decentralized and hybrid care delivery modality integrating both in-person and telehealth services provided at different layers of the care delivery network, i.e., central hospitals, satellite clinics, and patient homes. The operations of such care delivery systems need to take into consideration patients’ mobility and care needs, and rely on multiple types of nurses who can support and facilitate telehealth (with hospital physicians) in clinics and patient homes. We formulate an optimization problem, aiming at operationalizing the proposed care delivery network. Decisions regarding the type of care delivered, the location of care delivered, and the scheduling of all kinds of nurses are determined jointly to minimize operating costs while simultaneously satisfying patients’ care needs. We propose a bi-level approximation that exploits the structure of the hybrid telehealth system, and develop column generation-based heuristic algorithms to identify the joint decision rules for clinic selection, patient assignment, and visiting nurse routing problems. Numerical experiment results demonstrate our algorithm’s capability to achieve high-quality solutions in reasonable computation time, and is capable of solving instances with large patient sizes and time windows. Our work supports the efficient and effective operation of the proposed hybrid telehealth systems to improve patient access to care.more » « less
- 
            BackgroundDigital twins are computerized patient replicas that allow clinical interventions testingin silicoto minimize preventable patient harm. Our group has developed a novel application software utilizing a digital twin patient model based on electronic health record (EHR) variables to simulate clinical trajectories during the initial 6 h of critical illness. This study aimed to assess the usability, workload, and acceptance of the digital twin application as an educational tool in critical care. MethodsA mixed methods study was conducted during seven user testing sessions of the digital twin application with thirty-five first-year internal medicine residents. Qualitative data were collected using a think-aloud and semi-structured interview format, while quantitative measurements included the System Usability Scale (SUS), NASA Task Load Index (NASA-TLX), and a short survey. ResultsMedian SUS scores and NASA-TLX were 70 (IQR 62.5–82.5) and 29.2 (IQR 22.5–34.2), consistent with good software usability and low to moderate workload, respectively. Residents expressed interest in using the digital twin application for ICU rotations and identified five themes for software improvement: clinical fidelity, interface organization, learning experience, serious gaming, and implementation strategies. ConclusionA digital twin application based on EHR clinical variables showed good usability and high acceptance for critical care education.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
